397 research outputs found

    The Self-Calibrating Hubble Diagram

    Full text link
    As an increasing number of well measured type Ia supernovae (SNe Ia) become available, the statistical uncertainty on w has been reduced to the same size as the systematic uncertainty. The statistical error will decrease further in the near future, and hence the improvement of systematic uncertainties needs to be addressed, if further progress is to be made. We study how uncertainties in the primary reference spectrum - which are a main contribution to the systematic uncertainty budget - affect the measurement of the Dark Energy equation of state parameter w from SNe Ia. The increasing number of SN observations can be used to reduce the uncertainties by including perturbations of the reference spectrum as nuisance parameters in a cosmology fit, thus "self-calibrating" the Hubble diagram. We employ this method to real SNe data for the first time and find the perturbations of the reference spectrum consistent with zero at the 1%-level. For future surveys we estimate that ~3500 SNe will be required for our method to outperform the standard method of deriving the cosmological parameters.Comment: 17 pages, 8 figures, 1 table. Update to revised version accepted for publication in JCA

    Testing homogeneity with galaxy number counts : light-cone metric and general low-redshift expansion for a central observer in a matter dominated isotropic universe without cosmological constant

    Full text link
    As an alternative to dark energy it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to test this hypothesis we calculate the general analytical formula to fifth order for the redshift spherical shell mass. Using the same analytical method we write the metric in the light-cone by introducing a gauge invariant quantity G(z)G(z) which together with the luminosity distance DL(z)D_L(z) completely determine the light-cone geometry of a LTB model.Comment: 13 page

    Can the cosmological constant be mimicked by smooth large-scale inhomogeneities for more than one observable?

    Full text link
    As an alternative to dark energy it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to test such an hypothesis we calculate the low redshift expansion of the luminosity distance DL(z)D_L(z) and the redshift spherical shell mass density mn(z)mn(z) for a central observer in a LTB space without cosmological constant and show how they cannot fit the observations implied by a ΛCDM\Lambda CDM model if the conditions to avoid a weak central singularity are imposed, i.e. if the matter distribution is smooth everywhere. Our conclusions are valid for any value of the cosmological constant, not only for ΩΛ>1/3\Omega_{\Lambda}>1/3 as implied by previous proofs that q0appq^{app}_0 has to be positive in a smooth LTB space, based on considering only the luminosity distance. The observational signatures of smooth LTB matter dominated models are fundamentally different from the ones of ΛCDM\Lambda CDM models not only because it is not possible to reproduce a negative apparent central deceleration q0appq^{app}_0, but because of deeper differences in their space-time geometry which make impossible the inversion problem when more than one observable is considered, and emerge at any redshift, not only for z=0z=0.Comment: 18 pages, corrected a typo in the definition of the energy density which doesn't change the conclusion, references adde

    Probing the cosmic acceleration from combinations of different data sets

    Full text link
    We examine in some detail the influence of the systematics in different data sets including type Ia supernova sample, baryon acoustic oscillation data and the cosmic microwave background information on the fitting results of the Chevallier-Polarski-Linder parametrization. We find that the systematics in the data sets does influence the fitting results and leads to different evolutional behavior of dark energy. To check the versatility of Chevallier-Polarski-Linder parametrization, we also perform the analysis on the Wetterich parametrization of dark energy. The results show that both the parametrization of dark energy and the systematics in data sets influence the evolutional behavior of dark energy.Comment: 15 pages, 5 figures and 1 table, major revision, delete bao a data, main results unchanged. jcap in press

    Observational constraints on finite scale factor singularities

    Full text link
    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2x10^9 years, in future, at the 1{\sigma} CL, and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard dark energy models. We also show that there is an allowed value of m = 2/3 within 1{\sigma} CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution.Comment: 6 pages, some misprints correcte

    Late-time acceleration in Higher Dimensional Cosmology

    Get PDF
    We investigate late time acceleration of the universe in higher dimensional cosmology. The content in the universe is assumed to exert pressure which is different in the normal and extra dimensions. Cosmologically viable solutions are found to exist for simple forms of the equation of state. The parameters of the model are fixed by comparing the predictions with supernovae data. While observations stipulate that the matter exerts almost vanishing pressure in the normal dimensions, we assume that, in the extra dimensions, the equation of state is of the form Pρ1γP \propto \, \rho^{1 - \gamma}. For appropriate choice of parameters, a late time acceleration in the universe occurs with q0q_0 and ztrz_{tr} being approximately -0.46 and 0.76 respectively.Comment: 10 pages, 5 figure

    Regularizing cosmological singularities by varying physical constants

    Full text link
    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ\Lambda-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.Comment: 9 pages, 6 figures, Revtex4-1, an improved version to appear in JCA

    A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

    Full text link
    We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.Comment: 12 pages, 6 figure

    Investigating dark energy experiments with principal components

    Get PDF
    We use a principal component approach to contrast different kinds of probes of dark energy, and to emphasize how an array of probes can work together to constrain an arbitrary equation of state history w(z). We pay particular attention to the role of the priors in assessing the information content of experiments and propose using an explicit prior on the degree of smoothness of w(z) that is independent of the binning scheme. We also show how a figure of merit based on the mean squared error probes the number of new modes constrained by a data set, and use it to examine how informative various experiments will be in constraining the evolution of dark energy.Comment: A significantly expanded version with an added PCA for weak lensing, a new detailed discussion of the correlation prior proposed in this work, and a new discussion outlining the differences between the Bayesian and the frequentist approaches to reconstructing w(z). Matches the version accepted to JCAP. 8 pages, 2 figure

    Bayesian Analysis and Constraints on Kinematic Models from Union SNIa

    Full text link
    The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter (constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter (constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Λ\LambdaCDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q0q_0 and j0j_0) and for the transition redshift (ztz_t) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1σ1\sigma confidence limits imply the following ranges of values: q0[0.96,0.46]q_0\in[-0.96,-0.46], j0[3.2,0.3]j_0\in[-3.2,-0.3] and zt[0.36,0.84]z_t\in[0.36,0.84], which are compatible with the Λ\LambdaCDM predictions, q0=0.57±0.04q_0=-0.57\pm0.04, j0=1j_0=-1 and zt=0.71±0.08z_t=0.71\pm0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Λ\LambdaCDM model, and that the current observations are not powerful enough to discriminate among all of them.Comment: 13 pages. Matches published versio
    corecore